
Regression Diagnostics Procedures



ASSUMPTIONS UNDERLYING REGRESSION/CORRELATION

NORMALITY OF VARIANCE IN Y FOR EACH VALUE OF X

For any fixed value of the independent variable X, the 
distribution of the dependent variable Y is normal.

NORMALITY OF VARIANCE FOR THE ERROR TERM

The error term is normally distributed.  (Many authors argue that 
this is more important than normality in the distribution of Y).

THE INDEPENDENT VARIABLE IS UNCORRELATED WITH THE 
ERROR TERM



ASSUMPTIONS UNDERLYING 
REGRESSION/CORRELATION (Continued)

HOMOSCEDASTICITY

It is assumed that there is equal variances for Y, for each 
fixed value of X.

LINEARITY

The relationship between X and Y is linear.

INDEPENDENCE

The Y’s are statistically independent of each other.















Graph the Distributions of the Dependent 
and Independent Variables

They should be roughly normally distributed.  

If a given variable is not normally distributed, you may wish to 
consider transforming it (e.g., a log transformation).

If there is a serious violation of normality, you might consider 
dropping the variable from the analysis (e.g., if it is a 
independent variable, and not theoretically crucial).

You might also try another technique (e.g., nonlinear 
regression, logistic regression).



Some Tips for Transforming Data:

To correct positive skews:

• a stronger transformation: -1/X2

• some mild transformations: -1/X

log X

X



No shape change
Required: X

To correct negative skews:

• some mild transformations: X2

X3

• a stronger transformation: antilog X



Plotting to test the assumptions of Multiple Regression Analysis



Examine the Scatterplots of each X by Y.

The assumption is that the bivariate relationship will be roughly 
linear.

If it is not linear, you might consider transforming one (or both) of 
the variables.



Examine the Plots of the Residuals by Each X.

The assumption is that the residuals are equally distributed at 
each value of X, and that the slope of the regression line  = 0.

If not, you might consider a transformation, or a different 
form of the equation.



Examine the plot of the standardized residuals by the 
predicted value of Y.

The slope should be 0, the residuals spread out evenly at 
different levels of the predicted Y.



Examine the Normal P-P Plot.

This is the normal probability plot of the standardized 
residuals.  It is used to check normality.  If the variable is 
normally distributed, the plotted points form a straight 
diagonal line.



Use a histogram to examine the distribution of the 
residuals.

Similar to looking at the Normal P-P Plot.

The residuals should be roughly normally distributed.  Keep 
an eye out in particular for severe outliers.



Checking for Constance Variance

It is assumed that variance is the same across all values of the 
independent variable.

Plot the standardized (or studentized residuals) against the 
predicted values.  There should be equal spread, the slope should 
be 0).

Plot predicted Y by observed Y.  Should be linear association, 
equal spread below and above the regression line.



Examine the partial plots of each X by Y.

Again, the assumption is that the partial relationship will be 
roughly linear.

If it is not linear, you might consider transforming one of the 
variables.



Independence of the Y’s

It is assumed that the Ys are independent from one another.  This may not be 
the case if data collection occurred over time, or if the dependent variable is 
somehow related to time.

You can check for potential problems of this nature by:

1. Examining the Durban Watson statistic.  

One of the assumptions of regression analysis is that the residuals for 
consecutive observations are uncorrelated. If this is true, the expected 
value of the Durbin_Watson statistic is 2. Values less than 2 indicate 
positive autocorrelation, a common problem in time_series data. Values 
greater than 2 indicate negative autocorrelation.

2. You can plot the residuals by the sequence of the
observations.



Problems of Multicolinearity?

If an independent variable is strongly associated with another 
independent variable (colinearity, very high r2), or if an 
independent variable is a strong linear function of the other 
independent variables in a regression model (multicolinearity, 
very high R2) then problems may arise in the estimation of 
regression coefficients.  Notably, multicolinearity causes inflated 
standard errors for estimates of regression coefficients, and can 
cause other problems (coefficients with the wrong sign, dramatic 
changes in the sign and size of a coefficient when another one is 
added to the equation.).



Examine the intercorrelation matrix. Very high values of r 
indicate a potential problem.

Detecting Colinearity/Multicolinearity



Examine the tolerance. For each independent variable, the 
tolerance is the proportion of variability of that variable that is not 
explained by its linear relationship with the other independent 
variables in the model (1 - R2).  Tolerance can range from 0 to 1.  A 
value close to 1 indicates that an independent variable has little of 
its variability explained by the other independent variables.

A value close to 0 indicates that a variable is almost a linear 
combination of the other independent variables.  Tolerances of less 
than 0.1 may be a problem.



You can also look at the Variance Inflation Factor (VIF).  This 
is the reciprocal of the tolerance.  As the variance inflation factor 
increases, so does the variance of the regression coefficient, 
making it an unstable estimate.  Large VIF values are an 
indicator of Multicollinearity.



Solutions to Multicolinearity

One solution is to omit a problem variable from the analysis.

Another, is if you have several variables that are conceptually 
related, and that are highly intercorrelated, then you might 
consider creating an index.



Examine the Casewise Statistics

Are there outliers?

If yes, how large are they (what is their standardized value?)  If 
they are greater than 3.0 then they are unlikely to occur due to 
chance if the residuals are normally distributed.



Looking for Influential Points.

Influence Statistics

DfBeta(s): The difference in beta value is the change in 
the regression coefficient that results from the exclusion of a 
particular case.  A value is computed for each term in the 
model, including the constant.

Standardized
DfBeta(s) Standardized differences in beta values.  The 
change in the regression coefficient that results from the 
exclusion of a particular case.  SPSS suggests that you may 
want to examine cases with absolute values greater than 2 
divided by the square root of N, where N is the number of 
cases.  A value is computed for each term in the model 
including the constant.



DfFit The difference in fit value is the change in the 
predicted value that results from the exclusion of a 
particular case.

Standardized
DfFit Standardized difference in fit value.  The change in 
the predicted value that results from the exclusion of a 
particular case.

SPSS suggests that you may want to examine standardized 
values which in absolute value exceed 2 divided by the 
squared root of p/N where p is the number of independent 
variables in the equation and N is the number of cases.



Distances

Mahalanobis

A measure of how much a case’s values on the independent 
variables differ from the average of all cases.  A large 
Mahalanobis distance identifies a case as having extreme 
values on one or more of the independent variables.

Cook’s 
A measure of how much the residuals of all cases would 
change if a particular case were excluded from the 
calculation of the regression coefficients.

A large Cook’s D indicates that excluding a case from 
computation of the regression statistics, changes the 
coefficients substantially.



Leverage
Values

Measures the influence of a point on the fit of the 
regression.  The centered leverage ranges from 0 (no 
influence on the fit) to (N-1)/N.


